Dynamic deformable transformer for end‐to‐end face alignment

Author:

Han Liming1ORCID,Yang Chi23456,Li Qing1,Yao Bin1,Jiao Zixian23456,Xie Qianyang23456

Affiliation:

1. Institute of Microelectronics of the Chinese Academy of Sciences University of Chinese Academy of Sciences Beijing China

2. Department of Oral Surgery, Shanghai Ninth People’s Hospital Shanghai Jiao Tong University School of Medicine Shanghai China

3. College of Stomatology Shanghai Jiao Tong University Shanghai China

4. National Center for Stomatology Shanghai China

5. National Clinical Research Center for Oral Diseases Shanghai China

6. Shanghai Key Laboratory of Stomatology Shanghai China

Abstract

AbstractHeatmap‐based regression (HBR) methods have dominated for a long time in the face alignment field while these methods need complex design and post‐processing. In this study, the authors propose an end‐to‐end and simple enough coordinate‐based regression (CBR) method called Dynamic Deformable Transformer (DDT) for face alignment. Unlike general pre‐defined landmark queries, DDT uses Dynamic Landmark Queries (DLQs) to query landmarks' classes and coordinates together. Besides, DDT adopts a deformable attention mechanism rather than a regular attention mechanism which has a faster convergence speed and lower computational complexity. Experiment results on three mainstream datasets 300W, WFLW, and COFW demonstrate DDT exceeds the state‐of‐the‐art CBR methods by a large margin and is comparable to the current state‐of‐the‐art HBR methods with much less computational complexity.

Publisher

Institution of Engineering and Technology (IET)

Subject

Computer Vision and Pattern Recognition,Software

Reference46 articles.

1. A convolutional neural network cascade for face detection;Li H.;computer vision and pattern recognition,2015

2. Facenet: a unified embedding for face recognition and clustering;Schroff F.;computer vision and pattern recognition,2015

3. Nonlinear 3d face morphable model;Tran L.;computer vision and pattern recognition,2018

4. Facial expression recognition via a boosted deep belief network;Liu P.;computer vision and pattern recognition,2014

5. A Machine Learning Approach for Automated Facial Measurements in Facial Palsy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3