DualAD: Dual adversarial network for image anomaly detection⋆

Author:

Wan Yonghao1ORCID,Feng Aimin1ORCID

Affiliation:

1. Nanjing University of Aeronautics and Astronautics Nanjing China

Abstract

AbstractAnomaly Detection, also known as outlier detection, is critical in domains such as network security, intrusion detection, and fraud detection. One popular approach to anomaly detection is using autoencoders, which are trained to reconstruct input by minimising reconstruction error with the neural network. However, these methods usually suffer from the trade‐off between normal reconstruction fidelity and abnormal reconstruction distinguishability, which damages the performance. The authors find that the above trade‐off can be better mitigated by imposing constraints on the latent space of images. To this end, the authors propose a new Dual Adversarial Network (DualAD) that consists of a Feature Constraint (FC) module and a reconstruction module. The method incorporates the FC module during the reconstruction training process to impose constraints on the latent space of images, thereby yielding feature representations more conducive to anomaly detection. Additionally, the authors employ dual adversarial learning to model the distribution of normal data. On the one hand, adversarial learning was implemented during the reconstruction process to obtain higher‐quality reconstruction samples, thereby preventing the effects of blurred image reconstructions on model performance. On the other hand, the authors utilise adversarial training of the FC module and the reconstruction module to achieve superior feature representation, making anomalies more distinguishable at the feature level. During the inference phase, the authors perform anomaly detection simultaneously in the pixel and latent spaces to identify abnormal patterns more comprehensively. Experiments on three data sets CIFAR10, MNIST, and FashionMNIST demonstrate the validity of the authors’ work. Results show that constraints on the latent space and adversarial learning can improve detection performance.

Publisher

Institution of Engineering and Technology (IET)

Reference51 articles.

1. Anomaly detection

2. Log2vec

3. Adversarial Attacks Against Deep Learning-Based Network Intrusion Detection Systems and Defense Mechanisms

4. Credit card fraud detection in e‐commerce: an outlier detection approach;Porwal U.;arXiv: Learning,arXiv: Learning,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3