Eigenspectrum regularisation reverse neighbourhood discriminative learning

Author:

Xie Ming12,Tan Hengliang12ORCID,Du Jiao1,Yang Shuo1,Yan Guofeng1,Li Wangwang12,Feng Jianwei12

Affiliation:

1. School of Computer Science and Cyber Engineering Guangzhou University Guangzhou China

2. Metaverse Research Institute Guangzhou University Guangzhou China

Abstract

AbstractLinear discriminant analysis is a classical method for solving problems of dimensional reduction and pattern classification. Although it has been extensively developed, however, it still suffers from various common problems, such as the Small Sample Size (SSS) and the multimodal problem. Neighbourhood linear discriminant analysis (nLDA) was recently proposed to solve the problem of multimodal class caused by the contravention of independently and identically distributed samples. However, due to the existence of many small‐scale practical applications, nLDA still has to face the SSS problem, which leads to instability and poor generalisation caused by the singularity of the within‐neighbourhood scatter matrix. The authors exploit the eigenspectrum regularisation techniques to circumvent the singularity of the within‐neighbourhood scatter matrix of nLDA, which is called Eigenspectrum Regularisation Reverse Neighbourhood Discriminative Learning (ERRNDL). The algorithm of nLDA is reformulated as a framework by searching two projection matrices. Three eigenspectrum regularisation models are introduced to our framework to evaluate the performance. Experiments are conducted on the University of California, Irvine machine learning repository and six image classification datasets. The proposed ERRNDL‐based methods achieve considerable performance.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Guangdong Province

Publisher

Institution of Engineering and Technology (IET)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3