Gated Spatial–Temporal Merged Transformer Inspired by Multimask and Dual Branch for Traffic Forecasting

Author:

Yang YongpengORCID,Yang ZhenzhenORCID,Yang Zhen

Abstract

As an essential part of intelligent transportation system (ITS), traffic forecasting has provided crucial role for traffic management and risk assessment. However, complex spatial–temporal dependencies, heterogeneity, dynamicity, and periodicity of traffic data influence the traffic forecasting performance. Consequently, we propose a novel effective gated spatial–temporal merged transformer (GSTMT) inspired by multimask and dual branch for accurate traffic forecasting in this paper. Specifically, we first conduct a concatenation of gated spatial static mask transformer (GSSMT) and gated spatial dynamic mask transformer (GSDMT) with residual network. The GSSMT and GSDMT evolve from the traditional transformer by making preferable modifications that include gated linear unit (GLU), multimask mechanism including static mask matrix (SMM) and dynamic mask matrix (DMM), and spatial attention (SA). Among them, GLU is to promote the performance of capturing spatial dependency, dynamicity, and heterogeneity due to advanced performance for controlling information flow through layers. Additionally, by developing multimask mechanism including two novel SMM and DMM, the proposed GSTMT can precisely model the static and dynamic spatial structure for effectively highlighting static dependency and dynamicity. And SA is injected for enhancing the ability of capturing spatial dependency of GSSMT and GSDMT. Secondly, we develop a dual‐branch gated temporal transformer (DBGTT) for capturing temporal dependency, heterogeneity, dynamicity, and periodicity via incorporating the GLU and mixed time series decomposition (MTD) into traditional transformer. Similarly, we also introduce the GLU for empowering DBGTT with capability of capturing temporal dependency, dynamicity, and heterogeneity. In addition, MTD, which brings dual‐branch mechanism, can enhance the DBGTT for capturing more detailed temporal information via exploiting global and periodic profile of traffic data. At last, some experiments, which are performed on several real‐world traffic datasets, demonstrate the better results over classic traffic forecasting methods.

Funder

National Natural Science Foundation of China

Publisher

Institution of Engineering and Technology (IET)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. FastUtils: Fast, Readable Utility Functions;CRAN: Contributed Packages;2024-07-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3