Surface‐coated polymer nanocomposites containing z‐aligned high‐k nanowires as high‐performance dielectrics at elevated temperatures

Author:

Cheng Sang1ORCID,Yang Mingcong1,Fu Jing1,Wang Rui1,He Jinliang1,Li Qi1

Affiliation:

1. State Key Laboratory of Power Systems Department of Electrical Engineering Tsinghua University Beijing China

Abstract

AbstractRecently, demands for high‐performance polymer film capacitors at elevated temperatures have become more urgent. High dielectric constant is essential for dielectric materials to achieve substantial energy density at relatively low electric fields, which is of great significance to practical applications, while improving the permittivity of high‐temperature polymer dielectrics without a remarkable deterioration in other electrical properties still remains a challenge. Here, a polymer nanocomposite containing z‐aligned high‐k nanowires sandwiched by e‐beam evaporation deposited Al2O3 films was developed based on the optimal structure proposed by the phase‐field simulation. It is found that z‐aligned nanowires are more effective in promoting the dielectric constant than random‐aligned ones, and a large increase in dielectric constant is observed at relatively low content of nanofillers. Outer insulating layers effectively suppress the electric conduction and improve the breakdown strength. Consequently, the nanocomposite with only 1 volume fraction of z‐aligned nanowires exhibits a breakdown strength, electrical resistance, and charge–discharge efficiency as high as neat PEI, but more than twice the discharged energy density than it at 150 °C. This study realises the optimal structure predicted by simulation in experiment, obtaining high‐permittivity, high‐temperature nanocomposites at no expense of other electrical properties, and making it possible to achieve high discharged energy density at relatively low electric fields.

Publisher

Institution of Engineering and Technology (IET)

Subject

Materials Chemistry,Electrical and Electronic Engineering,Condensed Matter Physics,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3