Affiliation:
1. International Collaborative Center on Photoelectric Technology and Nano Functional Materials Institute of Photonics and Photon‐Technology Northwest University Xi'an China
2. Laboratoire de Mécanique des Sols Structures et Matériaux Centrale‐Supélec Université Paris‐Saclay Gif‐sur‐Yvette France
Abstract
AbstractHigh‐performance dielectric capacitors are essential components of advanced electronic and pulsed power systems for energy storage. Because of their high breakdown strength and excellent flexibility, polymer‐based capacitors are regarded as auspicious energy storage material. However, the energy storage capacity of polymer‐based capacitors is severely limited due to their low polarisation and low dielectric permittivity. The modified Stöber method was used to construct two types of CNT@SiO2 (CS) one‐dimensional core‐shell structured nanowires with different shell thicknesses. By integrating the procedures of solution mixing, melt blending, hot‐stretching orientation and hot pressing, sandwich‐structured poly (vinylidene fluoride) (PVDF)‐based composites were fabricated. The CS core‐shell nanowires dispersed in the inter‐layer serve as electron donors, leading to a high permittivity, while two PVDF outer layers provide the favourable overall breakdown strength. The insulating SiO2 shell can effectively limit the migration of carriers and keep the dielectric loss at a relatively low level in the composites. The CS/PVDF composite exhibited an enhanced discharged density (~6.1 J/cm3) and breakdown strength (~241 kV/mm) when the interlayer filled with as small as 1 wt% CS nanowires with the SiO2 shell thickness of 8 nm, which is 203% and 18.7 % higher than pure PVDF (~2.01 J/cm3 at 203 kV/mm), respectively. This research presents a practical strategy for designing and fabricating advanced polymer film capacitor energy storage devices.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Shaanxi Province
Publisher
Institution of Engineering and Technology (IET)
Subject
Materials Chemistry,Electrical and Electronic Engineering,Condensed Matter Physics,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献