Strain for toughened epoxy resin composites for GIL tri‐post insulators under tension and electric fields

Author:

Hao Liucheng1,Ren Weibin2ORCID,Chen Rui1,Wang Yaxiang1,Yang Minzheng2,Zhang Mufeng2,Yuan Duanpeng1,Shen Yang2

Affiliation:

1. Pinggao Group Co. LTD. Pingdingshan China

2. State Key Lab of New Ceramics and Fine Processing School of Materials Science and Engineering Tsinghua University Beijing China

Abstract

AbstractToughening plays a key role in epoxy resins (EPs) and their composites for high voltage gas‐insulated switchgear (GIL) tri‐post insulators and receives a lot of attention. However, there are still limited research studies on strain and its distribution for the toughened EPs and composites under tension and especially under high electric fields. Herein, the intrinsically toughening mechanism of EPs (toughening ability: EP‐B > EP‐A) and their composites with Al2O3 (toughening ability: EP‐Bcom > EP‐Acom) was explored in terms of chemical characterisation by IR and molecular motion via differential scanning calorimetry and dielectric spectra. A low rigid segment content in EPs contributes to the excellent toughness. Two‐dimensional digital image correlation (2D‐DIC) and three‐dimensional DIC (3D‐DIC) were utilised to probe strain and its distribution in EPs and their composites under tension and electric fields, respectively. EP‐B with more toughness endows it with a larger strain εF under tensile fields and a greater strain amplitude E| under electric fields than EP‐A, such as 9278 με at 1 kN, 16.9% greater than EP‐A and 9767 με at 10 kV/mm, 19.3% higher than EP‐A. In addition, all samples show minus strain under electric fields due to compression. With the introduction of Al2O3, EP‐Bcom exhibits a εF of 2870 με at 1 kN, 69.1% lower than that of EP‐B and 49.4% greater than that of EP‐Acom, and it provides E| of 5351 με at 10 kV/mm, 45.2% lower than that of EP‐B and 13.2% greater than that of EP‐Acom. Further, samples with more toughness deliver more uniform strain distribution whether under tension or electric fields.

Publisher

Institution of Engineering and Technology (IET)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3