Deep feature fusion‐based stacked denoising autoencoder for tag recommendation systems

Author:

Fei Zhengshun1ORCID,Wang Jinglong1,Liu Kangling2,Attahi Eric1,Huang Bingqiang1ORCID

Affiliation:

1. Provincial Key Institute of Robotics School of Automation and Electrical Engineering Zhejiang University of Science and Technology Hangzhou China

2. State Key Lab of Industrial Control Technology College of Control Science and Engineering Zhejiang University Hangzhou China

Abstract

AbstractWith the rapid development of artificial intelligence technology, commercial robots have gradually entered our daily lives. In order to promote product dissemination, shopping guide robots are a new service options of commerce platforms that use tag recommendation systems to identify users' intentions. A large number of applications combine user historical tagging information with the multi‐round dialogue ability of shopping guide robots to help users efficiently search for and retrieve products of interest. Recently, tensor decomposition methods have become a common approach for modelling entity interaction relationships in tag recommendation systems. However, due to the sparsity of data, these methods only consider low‐order information of entities, making it difficult to capture the higher‐order collaborative signals among entities. Recommendation methods by autoencoders can effectively extract abstract feature representations while they only focus on the two‐dimensional relationship between users and items, ignoring the interaction relationship among users, items and tags in real complex recommendation scenarios. The authors focus on modelling the similarity relationship among entities and propose a method called deep feature fusion tag (DFFT) based on the deep feature fusion of stacked denoising autoencoders. This method can extract high‐order information with different embedding dimensions and fuse them in a unified framework. To extract robust feature representations, the authors inject random noise (mask‐out/drop‐out noise) into the tag information corresponding to users and items to generate corrupted input data, and then utilise autoencoders to encode the interaction relationship among entities. To further obtain the interaction relationship with different dimensions, different encoding layers are stacked and combined to produce a better expanded model which can reinforce each other. Finally, a decoding component is used to reconstruct the original input data. According to the experimental results on two common datasets, the proposed DFFT method outperforms other baselines in terms of the F1@N, NDCG@N and Recall@N evaluation metrics.

Publisher

Institution of Engineering and Technology (IET)

Subject

Artificial Intelligence,Computational Theory and Mathematics,Computer Networks and Communications,Hardware and Architecture,Human-Computer Interaction,Information Systems

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3