A robust RGB‐D visual odometry with moving object detection in dynamic indoor scenes

Author:

Zhang Xianglong1,Yu Haiyang1ORCID,Zhuang Yan2

Affiliation:

1. College of Mechanical and Electronic Engineering Dalian Minzu University Dalian China

2. School of Control Science and Engineering Dalian University of Technology Dalian China

Abstract

AbstractSimultaneous localisation and mapping (SLAM) are the basis for many robotic applications. As the front end of SLAM, visual odometry is mainly used to estimate camera pose. In dynamic scenes, classical methods are deteriorated by dynamic objects and cannot achieve satisfactory results. In order to improve the robustness of visual odometry in dynamic scenes, this paper proposed a dynamic region detection method based on RGB‐D images. Firstly, all feature points on the RGB image are classified as dynamic and static using a triangle constraint and the epipolar geometric constraint successively. Meanwhile, the depth image is clustered using the K‐Means method. The classified feature points are mapped to the clustered depth image, and a dynamic or static label is assigned to each cluster according to the number of dynamic feature points. Subsequently, a dynamic region mask for the RGB image is generated based on the dynamic clusters in the depth image, and the feature points covered by the mask are all removed. The remaining static feature points are applied to estimate the camera pose. Finally, some experimental results are provided to demonstrate the feasibility and performance.

Funder

Natural Science Foundation of Liaoning Province

National Natural Science Foundation of China

Publisher

Institution of Engineering and Technology (IET)

Subject

Artificial Intelligence,Computational Theory and Mathematics,Computer Networks and Communications,Hardware and Architecture,Human-Computer Interaction,Information Systems

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3