Flexible operation of a CHP‐VPP considering the coordination of supply and demand based on a strengthened distributionally robust optimization

Author:

Yu Songyuan1ORCID,Fang Fang1,Liu Jizhen1

Affiliation:

1. School of Control and Computer Engineering North China Electric Power University Beijing China

Abstract

AbstractDue to the generation variability, the growing capacity of renewable energy has posed unprecedented challenges to ensure the security of power system operation. Here, a two‐stage strengthened distributionally robust optimization (DRO) scheme is proposed for theself‐scheduling of a combined heat and power virtual power plant (CHP‐VPP) over a coupled electric power network (EPN) and district heating network (DHN). The CHP‐VPP operator maximizes its profits in the day‐ahead market and minimizes its cost in the real‐time market under the worst‐case realization of the uncertainties. Instead of assuming that the uncertainties follow known probability distributions or confidence bounds, a strengthened ambiguity set based on moment information and Wasserstein metric is built to provide more accurate characterizations of the true probability distribution of uncertainties. In addition, in order to enhance the flexibility of the system, a HOMIE model considering indoor activities and outside temperatures of each building is built to satisfy the comfortable indoor temperature. To make the whole problem tractable, linearisation and duality theory are adopted, and then a tailored column‐and‐constraint generation algorithm is developed to solve the problem. The validity and applicability of the strengthened DRO scheme are verified by an IEEE 33‐bus EPN and 14‐node DHN.

Funder

National Natural Science Foundation of China

Publisher

Institution of Engineering and Technology (IET)

Subject

Electrical and Electronic Engineering,Control and Optimization,Computer Science Applications,Human-Computer Interaction,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3