Nonlinear impedance matching control for a submerged wave energy converter

Author:

Gonzalez‐Esculpi Alejandro1ORCID,Verde Cristina1,Maya‐Ortiz Paul2

Affiliation:

1. Instituto de Ingeniería Universidad Nacional Autónoma de México Mexico City Mexico

2. Facultad de Ingeniería Universidad Nacional Autónoma de México Mexico City Mexico

Abstract

AbstractThe impedance matching control, also known as approximate complex conjugate control (ACC), is one of the main strategies for improving the capture of energy by point absorber wave energy converters. Such a strategy shapes the mechanical impedance related to the floater dynamics via the control law. Since the traditional ACC is given by a linear control law, this work proposes a generalization denoted as nonlinear complex conjugate control (NCC) that considers the presence of nonlinear viscous damping in addition to the usual linear damping and stiffness. The energy maximization conditions for the proposed NCC are derived in the frequency domain through the describing function method. These conditions show that the ACC is a special case of the NCC when the total damping on the floater is approximated as a linear function of its velocity. From numerical simulations of a point absorber wave energy converters with nonlinear damping, which is based on the Archimedes wave swing prototype, it is shown that the NCC provides greater energy conversion than the ACC, as well as a robust performance in the presence of variations of the damping coefficient and the excitation force peak frequency.

Publisher

Institution of Engineering and Technology (IET)

Subject

Electrical and Electronic Engineering,Control and Optimization,Computer Science Applications,Human-Computer Interaction,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3