Knowledge‐based multiple hypothesis tracking and identification of manoeuvring reentry targets

Author:

Lee Chan‐Seok1,Whang Ick‐Ho1,Ra Won‐Sang1ORCID

Affiliation:

1. School of Mechanical and Control Engineering Pohang Gyeongbuk South Korea

Abstract

AbstractThis paper addresses the integrated tracking and identification problem of a manoeuvring reentry target that performs intentional lateral manoeuvres to disrupt ground radars. Unlike previous approaches, prior knowledge of the lift‐induced drag is incorporated into a new manoeuvring model to describe the reentry target dynamics more explicitly. This model can account for the constraint between lift and drag, which is beneficial in ensuring the reliability of target state estimation. Noticing that the lift‐induced drag is an inherent characteristics of a reentry target that distinguishes the target's identity from others belonging to the same class, the integrated target tracking and identification problem is formulated within the framework of the multiple hypothesis testing about a set of manoeuvring models constructed by different prior knowledge. The proposed approach enables the authors to derive the optimal solution to the given problem in a mathematically rigorous manner. To cope with the real‐time implementation issue, a hypothesis merging strategy is also devised in view of maintaining the target identification performance. Simulation results demonstrate that the proposed scheme provides superior performance and reliability both in target tracking and identification compared to the existing method, despite imperfectness of prior knowledge.

Funder

Defense Acquisition Program Administration

Publisher

Institution of Engineering and Technology (IET)

Subject

Electrical and Electronic Engineering

Reference34 articles.

1. On the validity of linearized analysis in the interception of reentry vehicles;Shinar J.;Guid., Nav., Contr. Conf. and Exhibit,1998

2. Dynamics of Atmospheric Re-Entry

3. Integrated Estimation/Guidance Design Approach for Improved Homing Against Randomly Maneuvering Targets

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3