An infrared and visible image fusion network based on multi‐scale feature cascades and non‐local attention

Author:

Xu Jing12,Liu Zhenjin12ORCID,Fang Ming32

Affiliation:

1. School of Computer Science and Technology Changchun University of Science and Technology Changchun China

2. Machine Vision and Unmanned Systems Laboratory Zhongshan Institute of Changchun University of Science and Technology Zhongshan China

3. School of Artificial Intelligence Changchun University of Science and Technology Changchun China

Abstract

AbstractIn recent years, research on infrared and visible image fusion has mainly focused on deep learning‐based approaches, particularly deep neural networks with auto‐encoder architectures. However, these approaches suffer from problems such as insufficient feature extraction capability and inefficient fusion strategies. Therefore, this paper introduces a novel image fusion network to address the limitations of infrared and visible image fusion networks with auto‐encoder architectures. In the designed network, the encoder employs a multi‐branch cascade structure, and these convolution branches with different kernel sizes provide the encoder with an adaptive receptive field to extract multi‐scale features. In addition, the fusion layer incorporates a non‐local attention module that is inspired by the self‐attention mechanism. With its global receptive field, this module is used to build a non‐local attention fusion network, which works together with the ‐norm spatial fusion strategy to extract, split, filter, and fuse global and local features. Comparative experiments on the TNO and MSRS datasets demonstrate that the proposed method outperforms other state‐of‐the‐art fusion approaches.

Publisher

Institution of Engineering and Technology (IET)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3