Attention‐generative adversarial networks for simulating rain field

Author:

Li Chen12ORCID,Zhao Zheng Yang2ORCID,Li Jia2,Guo Ye Cai2

Affiliation:

1. Jiangsu Province Engineering Research Center of Integrated Circuit Reliability Technology and Testing System Wuxi University Wuxi China

2. College of Electronic and Information Engineering Nanjing University of Information Science and Technology Nanjing China

Abstract

AbstractThe synthesis of rain fields is essential in multiple research fields and applications, including Single‐image Derain. However, there is a lack of research on simulated rain fields, and the existing rain field generation models struggle to capture complex spatial distributions and generate truly random rain fields. To address this, the authors propose a generative adversarial networks‐based rain field generation network, which consists of a generator, a discriminator, and a feature extraction block that can produce realistic and complex rain fields. The authors’ experiments demonstrate that this method achieves an average Frechet Inception Distance score of 0.035, and user studies indicate that the generated rain distribution looks naturally.

Funder

National Natural Science Foundation of China

Publisher

Institution of Engineering and Technology (IET)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3