Video object segmentation via couple streams and feature memory

Author:

Liang Yun1ORCID,Xiao Xinjie1ORCID,Qiu Shaojian1,Zhang Yuqing2ORCID,Su Zhuo3

Affiliation:

1. College of Mathematics and Informatics South China Agricultural University Guangzhou China

2. School of Control Science and Engineering Beijing University of Technology Beijing China

3. School of Control Science and Engineering Sun Yat‐sen University Guangzhou China

Abstract

AbstractIn recent years, most video segmentation methods use deep CNN to process the input image, but they did not fully mine the rich intermediate predictions in spatio‐temporal space. And, the segmentation challenges such as occlusion, severe deformation and illumination have not been well solved so far. To alleviate these problems, this paper focuses on constructing multi module network structures that represent multi semantics and proposes a video object segmentation network via coupled‐stream architecture with feature memory mechanism. This network first extracts high‐level semantic features, edge features, long‐term and short‐term stable depth features of the target, and then decode them into the segmentation mask of target. In addition, negative skeleton inhibition and frame interpolation are used to prevent the interference of similar objects and motion blur, respectively. The method has a low GPU memory usage, regardless of the number of object in video. And performs 86.5%and 62.4% in J&F measure on DAVIS 2016 and DAVIS 2017 validation set, without fine‐tuning and online training.

Funder

National Natural Science Foundation of China

Science and Technology Planning Project of Guangdong Province

Publisher

Institution of Engineering and Technology (IET)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3