MSFA: Multi‐stage feature aggregation network for multi‐label image recognition

Author:

Chen Jiale1ORCID,Xu Feng12,Zeng Tao1ORCID,Li Xin1,Chen Shangjing1,Yu Jie1

Affiliation:

1. College of Computer Science and Software Engineering Hohai University Nanjing People's Republic of China

2. Key Laboratory of Water Big Data Technology of Ministry of Water Resources Hohai University Nanjing People's Republic of China

Abstract

AbstractMulti‐label image recognition (MLR) is a significant branch of image classification that aims to assign multiple categorical labels to each input. Previous research has focused on enhancing the learning of category‐related regional features. However, the potential impact of multi‐scale distributions in intra‐ and inter‐category targets on MLR tends to be neglected. Besides, semantic consistency for categories is restricted to be considered on single‐scale features, resulting in suboptimal feature extraction. To address the limitations of above, a Multi‐stage Feature Aggregation (MSFA) network is proposed. In MSFA, a novel local feature extraction method is suggested to progressively extract category‐related high‐resolution local features in both spatial and channel dimensions. Subsequently, local and global features are fused without additional up‐ and down‐sampling to enrich the scale diversity of the features while incorporating refined class‐specific information. Furthermore, a hierarchical prediction scheme for MLR is proposed, which generates classification confidence corresponding to different scales under hierarchical loss supervision. Consequently, the final output of the network comes from the joint prediction by the classifiers on multi‐scale features, ensuring a stronger feature extraction capability. The extensive experiments have been carried on VOC and MS‐COCO datasets, and the superiority of MSFA over existing mainstream methods has been verified.

Funder

Fundamental Research Funds for the Central Universities

National Key Research and Development Program of China

Publisher

Institution of Engineering and Technology (IET)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3