An image‐based runway detection method for fixed‐wing aircraft based on deep neural network

Author:

Chen Mingqiang1,Hu Yuzhou1ORCID

Affiliation:

1. School of Flight Technology Civil Aviation Flight University of China Guanghan Sichuan China

Abstract

AbstractVisual information is important in final approach and landing phases for an approaching aircraft, it presents supplementary source for navigation system, and provides backup guidance when radio navigation fails, or even supports a complete vision‐based landing. Relative position and attitude can be solved from the runway features in the image. Traditional runway detection methods have high latency and low accuracy, which is unable to satisfy the requirements for a safe landing. This paper proposes a real‐time runway detection model, efficient runway feature extractor (ERFE), based on deep convolutional neural network, generating semantic segmentation and feature lines output. In order to evaluate the model's effectiveness, a benchmark is proposed to calculate the actual error between predicted feature line and ground truth one. A novel runway dataset which is based on pictures from Microsoft Flight Simulator 2020 (FS2020), is also proposed in this paper to train and test the model. The dataset will be released at https://www.kaggle.com/datasets/relufrank/fs2020‐runway‐dataset. ERFE shows excellent performance in FS2020 dataset, it gives satisfactory results even for real runway images excluded from our dataset.

Publisher

Institution of Engineering and Technology (IET)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3