Effective fusion module with dilation convolution for monocular panoramic depth estimate

Author:

Han Cheng12,Cai Yongqing1ORCID,Pan Xinpeng1,Wang Ziyun1

Affiliation:

1. School of Computer Science and Technology Changchun University of Science and Technology Changchun China

2. Chongqing Research Institute Changchun University of Science and Technology Chongqing China

Abstract

AbstractDepth estimation from monocular panoramic image is a crucial step in 3D reconstruction, which is a close relationship with virtual reality and metaverse technologies. In recent years, some methods, such as HRDFuse, BiFuse++, and UniFuse, have employed a two‐branch neural network leveraging two common projections: equirectangular and cubemap projections (CMPs). The equirectangular projection (ERP) provides a complete field of view but introduces distortion, while the CMP avoids distortion but introduces discontinuity at the boundary of the cube. In order to address the issue of distortion and discontinuity, the authors propose an efficient depth estimation fusion module to balance the feature mapping of the two projections. Moreover, for the ERP, the authors propose a novel inflated network architecture to extend the receptive field and effectively harness visual information. Extensive experiments show that the authors’ method predicts more clear boundaries and accurate depth results while outperforming mainstream panoramic depth estimation algorithms.

Funder

Natural Science Foundation of Jilin Province

Publisher

Institution of Engineering and Technology (IET)

Subject

Electrical and Electronic Engineering,Computer Vision and Pattern Recognition,Signal Processing,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3