Residual Neural Network for Direction‐of‐Arrival Estimation of Multiple Targets in Low SNR

Author:

Qin YanhuaORCID

Abstract

In this paper, a novel direction‐of‐arrival (DOA) estimation method is proposed for linear arrays on the basis of residual neural network (ResNet). The real parts, imaginary parts, and phase entries of the spatial covariance matrix from the on‐grid angles are used as the input of ResNet for training, and the angular directions formulated as a multilabel classification task are predicted using the sample covariance matrix from the off‐grid angles during the testing phase. ResNet demonstrates robustness in the scenarios on a fixed number of signals and a mixed number of signals. Simulation results show that ResNet can achieve significant performance in DOA estimation compared to multiple signal classification, estimation of signal parameters via rotation invariance techniques, convolutional neural network (CNN), and deep complex‐valued CNN in low signal‐to‐noise ratio.

Funder

Guangxi University of Science and Technology

Publisher

Institution of Engineering and Technology (IET)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3