CSL-SFNet for Cooperative Spectrum Sensing in Cognitive Satellite Network with GEO and LEO Satellites

Author:

Yang Kai12ORCID,Hu Shengbo23ORCID,Zhang Xin1ORCID,Yan Tingting2,Zhu Manqin2

Affiliation:

1. College of Big Data and Information Engineering, Guizhou University, Guiyang 550025, China

2. Intelligent Information Processing Research Institute, Guizhou Normal University, Guiyang 550001, China

3. Chinese Academy of Sciences (CAS), National Space Science Center, Beijing 100190, China

Abstract

In a cognitive satellite network (CSN) with GEO and LEO satellites, there is a large propagation losses between the sensing satellite and the ground station. The results of spectrum sensing from a single satellite may be inaccurate, which will create serious interference in the primary satellite system. Cooperative spectrum sensing (CSS) has become the key technology for solving the above problems in recent years. However, most of the current CSS techniques are model-driven. They are difficult to model and implement in CSNs since their detection performance is strongly dependent on an assumed statistical model. Thus, we propose a novel CSS scheme, which uses convolutional neural networks (CNNs), self-attention (SA) modules, long short-term memory networks (LSTMs), and soft fusion networks, called CSL-SFNet. This scheme combines the advantages of CNNs, SA modules, and LSTMs to extract the features of the input signals from the spatial and temporal domains. Additionally, the CSL-SFNet makes use of a novel soft fusion technique that improves detection performance while also considerably reducing communication overhead. The simulation results demonstrate that the proposed algorithm can achieve a detection probability of 90% when the signal-to-noise ratio is −20 dB; it has a shorter running time and always outperforms the other CSS algorithms.

Funder

Department of Education of Guizhou Province

Publisher

Institution of Engineering and Technology (IET)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3