Affiliation:
1. School of Information and Communication Engineering Harbin Engineering University Harbin China
2. Key Laboratory of Advanced Marine Communication and Information Technology Ministry of Industry and Information Technology Harbin Engineering University Harbin China
3. Harbin Institute of Technology Harbin China
4. Shanghai Radio Equipment Research Institute Shanghai China
Abstract
AbstractIn the current complex situations of electronic intelligence (ELINT), the authors present a radar emitter structure (RES) identification method based on deep learning at a new level to address the issue of incomplete cognitive information. Firstly, due to the fact that existing simulation data cannot fully reflect the structure features of the entire radar emitter, the structure feature‐level RES model is built using direct digital synthesiser (DDS) technology and radio frequency (RF) simulation platform. Afterwards, considering that the structure features are reflected in the frequency domain, a stacked frequency sparse auto encoder (sFSAE) network is constructed by adding a constraint term in frequency domain to the loss function of sparse auto encoder (SAE). Using deep learning to extract structure features with constraints in different domains is instructive for feature extraction techniques under variable operating parameters. Finally, the extracted structure features are input into the Softmax classifier to perform the identification from the radar signal to the RES. The experimental results show that the proposed method has high generalisation ability and robustness under different modulation types, different operating parameters and different signal to noise ratio (SNR). It also has a high identification rate even for untrained modulated signals.
Publisher
Institution of Engineering and Technology (IET)
Subject
Electrical and Electronic Engineering