An reconstruction bidirectional recurrent neural network ‐based deinterleaving method for known radar signals in open‐set scenarios

Author:

Zheng Haiping1ORCID,Xie Kai1,Zhu Yingshen2,Lin Jinjian1,Wang Lihong1

Affiliation:

1. School of Electronics and Communication Engineering Sun Yat‐Sen University Shenzhen China

2. Beijing Institute of Radio Measurement Beijing China

Abstract

AbstractIn electronic warfare, radar signal deinterleaving is a critical task. While many researchers have applied deep learning and utilised known radar classes to construct interleaved pulse sequences training sets for deinterleaving models, these models face challenges in distinguishing between known and unknown radar classes in open‐set scenarios. To address this challenge, the authors propose a novel model, the Reconstruction Bidirectional Recurrent Neural Network (RBi‐RNN). RBi‐RNN utilises input reconstruction and employs a joint training strategy incorporating cross‐entropy loss, reconstruction loss, and centre loss. These strategies aim to maximise inter‐class latent representation distances while minimising intra‐class disparities. By incorporating an open‐set recognition method based on extreme value theory, RBi‐RNN adapts to open‐set scenarios. Simulation results demonstrate the superiority of RBi‐RNN over conventional models in both closed‐set and open‐set scenarios. In open‐set scenarios, it successfully discriminates between known and unknown radar signals within interleaved pulse sequences, deinterleaving known radar classes with high stability. The authors lay the foundation for future unsupervised deinterleaving methods designed specifically for unknown radar pulses.

Publisher

Institution of Engineering and Technology (IET)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3