Target recognition in diverse synthetic aperture radar image datasets with low size weight and power processing hardware

Author:

Lane Richard O.1ORCID,Holmes Wendy J.1ORCID,Lamont‐Smith Timothy1ORCID

Affiliation:

1. QinetiQ Great Malvern UK

Abstract

AbstractThis paper studies the performance of target detection and classification algorithms applied to synthetic aperture radar (SAR) data. We describe a process to merge measured environmental SAR scene images with target image chips to produce a large dataset for training deep learning algorithms. Three algorithms, RetinaNet, EfficientDet, and YOLOv5, were trained using a powerful cloud server. Performance at inference time, in terms of speed and accuracy, was tested on both the cloud server and a low size weight and power (SWAP) single board computer. YOLOv5 was found to be the most accurate and fastest algorithm on the cloud server but the slowest on the low‐SWAP device. RetinaNet and EfficientDet produced operationally useful throughput on the low‐SWAP device for surveillance applications, with RetinaNet having the higher accuracy. Further qualitative analysis of algorithm performance on additional data with different characteristics highlighted the importance of gathering relevant training data and carrying out suitable pre‐processing steps.

Funder

QinetiQ

Defence Science and Technology Laboratory

Publisher

Institution of Engineering and Technology (IET)

Reference18 articles.

1. Hadland A.:AI Analysis using Low‐SWAP Hardware: Literature Review(2020). QinetiQ/20/02995

2. Tan M. Pang R. Le Q.V.:EfficientDet: Scalable and Efficient Object Detection(2020). arXiv:1911.09070

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3