Open space radar specific emitter identification using MSAK‐CNN‐LSTM network

Author:

Zheng Yuanhao1,Wang Jiantao1,Huang Jie1ORCID

Affiliation:

1. Information Engineering University Zhengzhou China

Abstract

AbstractTo enhance the capability of identifying unknown emitters in open spaces, an open‐multiscale attention kernel (MSAK)‐convolutional neural network‐long short‐term memory (CNN‐LSTM) structure is proposed. To this end, first, a MSAK module and CNN‐LSTM structure are introduced, and then, the depth and complexity of the feature extraction network are improved to enhance its representation capability. To classify unknown emitters accurately, the MSAK‐CNN‐LSTM model is improved to obtain an open‐MSAK‐CNN‐LSTM model with open‐set recognition capability. Additionally, the two preprocessing procedures are summarised, and their strengths and weaknesses are compared. Experimental results show that the proposed open‐MSAK‐CNN‐LSTM model achieves satisfactory accuracy in identifying unknown emitters in open space. In addition, it has significant advantages in low signal‐to‐noise ratio (SNR) scenarios.

Publisher

Institution of Engineering and Technology (IET)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3