Affiliation:
1. Shanghai Acoustics Laboratory Chinese Academy of Sciences Shanghai China
2. Institute of Acoustics Chinese Academy of Sciences Beijing China
3. Key Laboratory of Underwater Acoustic Environment Chinese Academy of Sciences Beijing China
4. University of Chinese Academy of Sciences Beijing China
Abstract
AbstractThe performance of Doppler velocity logs (DVLs) in terms of velocity estimate error is directly linked to the geometry of the beam and the pulse transmitted. Beyond a specific transmitted bandwidth, the phase‐shift beamformer can introduce significant errors in velocity estimation. To delineate the operating mechanism of phase‐shift errors within a phased array of acoustic DVLs, the correlation between bottom echo and velocity distribution, in conjunction with the power‐weighted function, was initially examined predicated on spectral estimation theory. Subsequently, numerical and analytical models of the Gaussian‐shaped Doppler spectrum were formulated. The models are employed to evaluate the velocity estimation inaccuracies attributed to phase shifts in extant DVLs, and the comparative results with field experiments corroborate the model's efficacy in forecasting errors. The theoretical findings evaluate the performance limitations of the current phased array transducer design and provide insights for developing new designs. Pool experimental results show that this design effectively reduces the velocity estimation error caused by phase shift under static conditions and in the presence of Doppler frequencies to a level of almost complete elimination of the error compared to conventional configurations.
Publisher
Institution of Engineering and Technology (IET)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献