Deep learning‐based time delay estimation for motion compensation in synthetic aperture sonars

Author:

Chen Shiping123ORCID,Chi Cheng123,Zhang Pengfei123,Wang Peng123ORCID,Liu Jiyuan123,Huang Haining123

Affiliation:

1. Institute of Acoustics Chinese Academy of Sciences Beijing China

2. Key Laboratory of Science and Technology on Advanced Underwater Acoustic Signal Processing Chinese Academy of Sciences Beijing China

3. University of Chinese Academy of Sciences Beijing China

Abstract

AbstractAccurate and robust time delay estimation is crucial for synthetic aperture sonar (SAS) imaging. A two‐step time delay estimation method based on displaced phase centre antenna (DPCA) micronavigation has been widely applied in motion estimation and compensation of SASs. However, the existing methods for time delay estimation are not sufficiently robust, which reduces the performance of SAS motion estimation. Deep learning is currently one of the cutting‐edge techniques and has brought about a remarkable progress in the field of underwater acoustic signal processing. In this study, a deep learning‐based time delay estimation method is introduced to SAS motion estimation and compensation. The subband processing is first applied to obtain ambiguous time delays between adjacent pings from phases of SAS echoes. Then, a lightweight neural network is utilised to construct phase unwrapping. The model of the employed neural network is trained with simulation data and applied to real SAS data. The results of time delay estimation and motion compensation demonstrate that the proposed neural network‐based method has much better performance than the two‐step and joint‐subband methods.

Publisher

Institution of Engineering and Technology (IET)

Subject

Electrical and Electronic Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3