Sparse vegetation height estimation based on non‐local sample selection with generalised inner product

Author:

Xu Jing12ORCID,Cheng Long12,Xue Chao3,Suo Zhiyong3ORCID

Affiliation:

1. Changchun Institute of Optics Fine Mechanics and Physics Chinese Academy of Sciences Changchun China

2. University of Chinese Academy of Sciences Beijing China

3. National Key Lab. of Radar Signal Processing Xidian University Xi‐an China

Abstract

AbstractWith the assumption of densely distributed vegetation in PolInSAR processing, the height parameters can be inversed by the conventional random volume over ground (RVoG) method. During the procedure of RVoG, the samples used to estimate the PolInSAR coherence are selected directly from the neighbouring areas. However, for sparsely distributed vegetation, the scattering statistics are different from those of densely distributed vegetation. Therefore, the inversion performance will be deteriorated if the samples are selected directly in the neighbouring areas. A new phase‐based method is proposed to select samples, whose positions represent the volume scattering pixels, for sparsely distributed vegetation height inversion. By analysing the scattering characteristics of sparsely distributed vegetation, the processing data vector is formulated based on the amplitude‐normalised interferograms. With the PolSAR classification, the generalised inner product (GIP) is iteratively used to select the non‐local samples based on the formulated phase data vectors, which are utilised for sparsely distributed vegetation height inversion. For the selected sample sets, the vegetation distribution can be approximately regarded as “dense distribution”, and then the vegetation height parameters can be inversed by RVoG method. Compared to the height inversion performance based on different sample selection methods, the effectiveness of the proposed method is validated by the PolSARPro simulated data and the real airborne L‐band PolInSAR data.

Publisher

Institution of Engineering and Technology (IET)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3