Hybrid method for short‐term photovoltaic power forecasting based on deep convolutional neural network
Author:
Affiliation:
1. College of Energy and Electrical EngineeringHohai UniversityNanjing210098People's Republic of China
2. Department of Electrical EngineeringXi'an Jiaotong UniversityXi'an710049People's Republic of China
3. GE Grid SolutionsRedmondWA98052USA
Funder
National Natural Science Foundation of China
Publisher
Institution of Engineering and Technology (IET)
Subject
Electrical and Electronic Engineering,Energy Engineering and Power Technology,Control and Systems Engineering
Link
https://onlinelibrary.wiley.com/doi/pdf/10.1049/iet-gtd.2018.5847
Reference42 articles.
1. Environmental impacts of utility-scale solar energy
2. Solar energy: Markets, economics and policies
3. Use of support vector regression and numerically predicted cloudiness to forecast power output of a photovoltaic power plant in Kitakyushu, Japan
4. A nonlinear support vector machine model with hard penalty function based on glowworm swarm optimization for forecasting daily global solar radiation
5. Comparing support vector regression for Pv power forecasting to a physical modeling approach using measurement, numerical weather prediction, and cloud motion data;Wolff B.;Sol. Energy,2016
Cited by 183 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Ultra-short-term distributed PV power forecasting for virtual power plant considering data-scarce scenarios;Applied Energy;2024-11
2. Precise single step and multistep short-term photovoltaic parameters forecasting based on reduced deep convolutional stack autoencoder and minimum variance multikernel random vector functional network;Engineering Applications of Artificial Intelligence;2024-10
3. A Short-Term Power Prediction Method for Photovoltaics Based on Similar Day Clustering and Spatio-Temporal Feature Extraction;Electronics;2024-09-06
4. A Three-Step Weather Data Approach in Solar Energy Prediction Using Machine Learning;Renewable Energy Focus;2024-09
5. Harnessing the power of hybrid deep learning algorithm for the estimation of global horizontal irradiance;Science of The Total Environment;2024-09
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3