Machine learning based fault detection technique for hybrid multi level inverter topology

Author:

Chappa Anilkumar1,Rao K. Dhananjay2,Dhananjaya Mudadla3,Dawn Subhojit2,Al Mansur Ahmed4,Ustun Taha Selim5ORCID

Affiliation:

1. Department of Electrical & Electronics Engineering Sri Vasavi Engineering College Tadepalligudem India

2. Department of Electrical & Electronics Engineering Velagapudi Ramakrishna Siddhartha Engineering College Vijayawada India

3. Department of EEE Anil Neerukonda Institute of Technology and Science (A) Visakhapatnam Andhra Pradesh India

4. Department of Electrical and Electronic Engineering Green University of Bangladesh Dhaka Bangladesh

5. Fukushima Renewable Energy Institute, AIST (FREA) Koriyama Japan

Abstract

AbstractMultilevel inverters (MLIs) have a significant contribution in many industrial sectors due to their improved power quality and lesser voltage stress, over the conventional three‐level inverters. However, the implementation of MLIs with an increased device count creates the scope of development in MLIs topologies. In this regard, a hybrid MLI topology is studied in this paper whose architecture is based on conventional two‐level inverters. This topology has lesser device count characteristics when compared to conventional and most of the recently presented configurations for nine‐level output voltage generation. The major issue of capacitor voltage balancing is resolved by employing an appropriate switching strategy. However, the semiconductor switches are the most vulnerable components and causes the open circuit faults frequently that creates issues in real time operation. Hence, it is important to detect the open circuit fault in switches in the least possible time. A new approach to open circuit fault detection technique based on the analysis of load voltage waveform is proposed in this paper. The wavelet transform technique has been implemented for feature extraction of load voltage. Later, the classification of the fault has been achieved by training an artificial neural network (ANN). The proposed work has been studied in MATLAB/simulation and the obtained results are verified experimentally.

Publisher

Institution of Engineering and Technology (IET)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3