Bayesian attention‐based user behaviour modelling for click‐through rate prediction

Author:

Zhang Yihao1ORCID,Chen Mian1,Chen Ruizhen1,Zhao Chu1,Yuan Meng2,Sun Zhu3

Affiliation:

1. School of Artificial Intelligence Chongqing University of Technology Chongqing China

2. Institute of Artificial Intelligence Beihang University Beijing China

3. School of Computing Macquarie University Sydney New South Wales Australia

Abstract

AbstractExploiting the hierarchical dependence behind user behaviour is critical for click‐through rate (CRT) prediction in recommender systems. Existing methods apply attention mechanisms to obtain the weights of items; however, the authors argue that deterministic attention mechanisms cannot capture the hierarchical dependence between user behaviours because they treat each user behaviour as an independent individual and cannot accurately express users' flexible and changeable interests. To tackle this issue, the authors introduce the Bayesian attention to the CTR prediction model, which treats attention weights as data‐dependent local random variables and learns their distribution by approximating their posterior distribution. Specifically, the prior knowledge is constructed into the attention weight distribution, and then the posterior inference is utilised to capture the implicit and flexible user intentions. Extensive experiments on public datasets demonstrate that our algorithm outperforms state‐of‐the‐art algorithms. Empirical evidence shows that random attention weights can predict user intentions better than deterministic ones.

Funder

National Natural Science Foundation of China

Publisher

Institution of Engineering and Technology (IET)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3