GP‐FMLNet: A feature matrix learning network enhanced by glyph and phonetic information for Chinese sentiment analysis

Author:

Li Jing12ORCID,Zhang Dezheng12,Xie Yonghong12,Wulamu Aziguli12,Zhang Yao3

Affiliation:

1. School of Computer and Communication Engineering University of Science and Technology Beijing Beijing China

2. Beijing Key Laboratory of Knowledge Engineering for Materials Science University of Science and Technology Beijing Beijing China

3. University of Alberta Edmonton Alberta Canada

Abstract

AbstractSentiment analysis is a fine‐grained analysis task that aims to identify the sentiment polarity of a specified sentence. Existing methods in Chinese sentiment analysis tasks only consider sentiment features from a single pole and scale and thus cannot fully exploit and utilise sentiment feature information, making their performance less than ideal. To resolve the problem, the authors propose a new method, GP‐FMLNet, that integrates both glyph and phonetic information and design a novel feature matrix learning process for phonetic features with which to model words that have the same pinyin information but different glyph information. Our method solves the problem of misspelling words influencing sentiment polarity prediction results. Specifically, the authors iteratively mine character, glyph, and pinyin features from the input comments sentences. Then, the authors use soft attention and matrix compound modules to model the phonetic features, which empowers their model to keep on zeroing in on the dynamic‐setting words in various positions and to dispense with the impacts of the deceptive‐setting ones. Experiments on six public datasets prove that the proposed model fully utilises the glyph and phonetic information and improves on the performance of existing Chinese sentiment analysis algorithms.

Publisher

Institution of Engineering and Technology (IET)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3