GAN‐MD: A myocarditis detection using multi‐channel convolutional neural networks and generative adversarial network‐based data augmentation

Author:

Ahmadi Golilarz Hengame1,Azadbar Alireza2ORCID,Alizadehsani Roohallah3,Gorriz Juan Manuel4

Affiliation:

1. Department of Medical Radiation Engineering Faculty of Engineering Lahijan Branch Islamic Azad University Lahijan Iran

2. Department of Medical Radiation Engineering Lahijan Branch Islamic Azad University Lahijan Iran

3. Institute for Intelligent Systems Research and Innovation (IISRI) Deakin University Waurn Ponds Victoria Australia

4. Data Science and Computational Intelligence Institute University of Granada Granada Spain

Abstract

AbstractMyocarditis is a significant public health concern because of its potential to cause heart failure and sudden death. The standard invasive diagnostic method, endomyocardial biopsy, is typically reserved for cases with severe complications, limiting its widespread use. Conversely, non‐invasive cardiac magnetic resonance (CMR) imaging presents a promising alternative for detecting and monitoring myocarditis, because of its high signal contrast that reveals myocardial involvement. To assist medical professionals via artificial intelligence, the authors introduce generative adversarial networks ‐ multi discriminator (GAN‐MD), a deep learning model that uses binary classification to diagnose myocarditis from CMR images. Their approach employs a series of convolutional neural networks (CNNs) that extract and combine feature vectors for accurate diagnosis. The authors suggest a novel technique for improving the classification precision of CNNs. Using generative adversarial networks (GANs) to create synthetic images for data augmentation, the authors address challenges such as mode collapse and unstable training. Incorporating a reconstruction loss into the GAN loss function requires the generator to produce images reflecting the discriminator features, thus enhancing the generated images' quality to more accurately replicate authentic data patterns. Moreover, combining this loss function with other regularisation methods, such as gradient penalty, has proven to further improve the performance of diverse GAN models. A significant challenge in myocarditis diagnosis is the imbalance of classification, where one class dominates over the other. To mitigate this, the authors introduce a focal loss‐based training method that effectively trains the model on the minority class samples. The GAN‐MD approach, evaluated on the Z‐Alizadeh Sani myocarditis dataset, achieves superior results (F‐measure 86.2%; geometric mean 91.0%) compared with other deep learning models and traditional machine learning methods.

Publisher

Institution of Engineering and Technology (IET)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3