Join multiple Riemannian manifold representation and multi‐kernel non‐redundancy for image clustering

Author:

Zhang Mengyuan1,Liu Jinglei1ORCID

Affiliation:

1. School of Computer and Control Engineering Yantai University Yantai Shandong China

Abstract

AbstractImage clustering has received significant attention due to the growing importance of image recognition. Researchers have explored Riemannian manifold clustering, which is capable of capturing the non‐linear shapes found in real‐world datasets. However, the complexity of image data poses substantial challenges for modelling and feature extraction. Traditional methods such as covariance matrices and linear subspace have shown promise in image modelling, and they are still in their early stages and suffer from certain limitations. However, these include the uncertainty of representing data using only one Riemannian manifold, limited feature extraction capacity of single kernel functions, and resulting incomplete data representation and redundancy. To overcome these limitations, the authors propose a novel approach called join multiple Riemannian manifold representation and multi‐kernel non‐redundancy for image clustering (MRMNR‐MKC). It combines covariance matrices with linear subspace to represent data and applies multiple kernel functions to map the non‐linear structural data into a reproducing kernel Hilbert space, enabling linear model analysis for image clustering. Additionally, the authors use matrix‐induced regularisation to improve the clustering kernel selection process by reducing redundancy and assigning lower weights to identical kernels. Finally, the authors also conducted numerous experiments to evaluate the performance of our approach, confirming its superiority to state‐of‐the‐art methods on three benchmark datasets.

Publisher

Institution of Engineering and Technology (IET)

Reference41 articles.

1. Optimal neighborhood multiple kernel clustering with adaptive local kernels;Liu J.;IEEE Trans. Knowl. Data Eng.,2020

2. Generative Partial Multi-View Clustering With Adaptive Fusion and Cycle Consistency

3. Efficient and effective regularized incomplete multi‐view clustering;Liu X.;IEEE Trans. Pattern Anal. Mach. Intell.,2020

4. Automatic Fuzzy Clustering Framework for Image Segmentation

5. Unsupervised Learning of Image Segmentation Based on Differentiable Feature Clustering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3