Suppression to concurrent commutation failure of UHVDC with hierarchical connection mode based on improved dc current prediction

Author:

Li Shenghu1ORCID,Li Yikai1

Affiliation:

1. School of Electrical Engineering and Automation Hefei University of Technology Hefei China

Abstract

AbstractFor the ultra high‐voltage dc (UHVDC) transmission with hierarchical connection mode (HCM) at the inverter side, local commutation failure (LCF) at one layer after the ac fault may cause concurrent commutation failure (CCF) at the non‐fault layer. The inter‐layer couplings at the ac and dc sides add the difficulty to suppress the CCF. The fault instant may decide the dc current variation during the commutation, which affects the suppression effect. This paper shows the mechanism of the CCF including the inter‐layer ac and dc coupling, and proposes a control method for the inverter at the fault and non‐fault layers. First, an analytical expression among the dc current, ac voltage, and extinction angle of both layers is newly derived to find the dominant factors to the CCF. Second, to improve the calculation accuracy, a three‐point sampling function using Newton interpolation is newly proposed to predict the dc current. Finally, a coordinated control strategy based on the constant extinction area, the overlap‐arc area, and the dominant factor of the CCF is proposed to adjust the firing angle and suppress the CCF. The simulation results using the PSCAD/EMTDC software are given to verify the control effect of the proposed method against the CCF.

Funder

National Natural Science Foundation of China

Publisher

Institution of Engineering and Technology (IET)

Subject

Electrical and Electronic Engineering,Energy Engineering and Power Technology,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3