Multi‐objective optimal planning of a residential energy hub based on multi‐objective particle swarm optimization algorithm

Author:

Davoudi Mehdi1,Barmayoon Mohammad Hossein1,Moeini‐Aghtaie Moein1

Affiliation:

1. Department of Energy Engineering Sharif University of Technology Tehran Iran

Abstract

AbstractWith the increasing rate of population in big cities around the world, the tendency to build new buildings in the suburb of main cities or to build large apartments in the main cities has been highlighted. In this regard, building residential complexes has seen a dramatic increase in these areas as it makes it possible to build a large number of residential units within a reasonable space. Although these complexes have brought numerous benefits, they are some challenges regarding their construction processes. One main concern associated with these complexes is how to optimally install energy components such as transformers, combined heat and power (CHP) units, boilers etc., in the shared area of apartments in the residential complex. To address this issue, this paper models the energy system of a residential complex as an energy hub and proposes a novel framework to obtain the optimal planning of such an energy hub. In order to address the conflicting desires of the residential complex's builders and the future residents of the residential units, a multi‐objective (MO) optimization problem has been considered in the proposed method that simultaneously optimizes the investment costs, operation costs, and the reliability of energy supply. In this regard, a Multi‐objective Particle Swarm Optimization (MOPSO) algorithm combined with classical linear programming (LP) optimization method has been proposed to solve the MO optimization problem. In order to demonstrate the effectiveness of the proposed method, a case study including a residential complex with 300 residential units is considered, and the proposed method is implemented in this case study. The numerical results show that the proposed framework can appropriately optimize investment costs, operation costs, and the reliability index simultaneously, and the obtained Pareto frontier gives the investors the freedom to opt for any point from this surface.

Publisher

Institution of Engineering and Technology (IET)

Subject

Electrical and Electronic Engineering,Energy Engineering and Power Technology,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3