Multi‐stage stochastic long‐term planning of grid‐connected hydrogen‐based energy system based on improved SDDIP

Author:

Cao Binrui1,Wu Xiong1ORCID,Liu Bingwen1,Wang Xiuli1,Wang Penglei2,Wu Yunyi2

Affiliation:

1. School of Electrical Engineering Xi'an Jiaotong University Xi'an China

2. China Three Gorges Corporation Beijing China

Abstract

AbstractHydrogen‐based energy systems (HESs) have shown great potential to promote the process of decarbonization. Conventional studies mainly focus on the sizing and operation of HESs in a determined static situation, and the dynamic planning model of HESs considering large‐scale uncertain scenarios of future developments should be considered. This paper proposes a multi‐stage stochastic programming (MSP) long‐term planning model to find the optimal sequential planning results of the grid‐connected HES. The planning model considers the long‐term uncertainties of the investment cost decrease and the load increase. Additionally, the short‐term uncertainties of renewable energies are also considered to obtain robust results in each stage. The improved stochastic dual dynamic integer programming (SDDIP) is then employed to solve the MSP long‐term planning model with consideration of the realized uncertainties. Specifically, the sequential planning order is developed to improve the efficiency of the SDDIP. Numerical case studies are constructed to show the convergence process of the improved SDDIP and the planning results of the HES. Moreover, the improved SDDIP shows greater efficiency compared with the traditional SDDIP and the method which solves the model directly.

Publisher

Institution of Engineering and Technology (IET)

Subject

Electrical and Electronic Engineering,Energy Engineering and Power Technology,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3