A three‐stage switching MMC topology for capacitor voltage ripple reduction in HVDC applications

Author:

Fan Qiang1,Xu Jianzhong1,Liang Tian2,Dinavahi Venkata2,Zhao Chengyong1

Affiliation:

1. School of Electrical and Electronic Engineering North China Electric Power University (NCEPU) Beijing People's Republic of China

2. Department of Electrical and Computer Engineering University of Alberta, Edmonton Alberta Canada

Abstract

AbstractModular multi‐level converters (MMCs) are a mainstay in many HVDC transmission projects worldwide. Half‐bridge MMC (HB‐MMC) is mostly used in the current project. The large capacitor of sub modules (SMs) is often required in MMC to ensure the low voltage ripple. Here, the three‐stage switching MMC (TSS‐MMC) topology is proposed, which can greatly reduce the capacitor voltage ripple of SMs by dynamically adjusting the position of inductance on the upper and down bridge arms. The principle of reducing capacitor voltage ripple based on equal capacitance theory is introduced. The selection of the inductance value of each part in TSS‐MMC is introduced. The start‐up process strategy, capacitor voltage ripple reduction strategy in steady‐state operation, and DC fault ride‐through strategy of TSS‐MMC are proposed. The effectiveness and engineering practicability of the proposed TSS‐MMC is verified by transient simulation program built on PSCAD/EMTDC. The simulation results show that compared with MMC with circulating current suppressing controller (CCSC), it can effectively reduce the capacitor voltage ripple by over 50%. Furthermore, the total used inductance of TSS‐MMC can also be reduced. A comprehensive assessment of TSS‐MMC is also carried out.

Publisher

Institution of Engineering and Technology (IET)

Subject

Electrical and Electronic Engineering,Energy Engineering and Power Technology,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3