A reliable optimization framework using ensembled successive history adaptive differential evolutionary algorithm for optimal power flow problems

Author:

Premkumar Manoharan1ORCID,Kumar Chandrasekaran2ORCID,Dharma Raj Thankkapan3,Sundarsingh Jebaseelan Somasundaram David Thanasingh4,Jangir Pradeep5,Haes Alhelou Hassan6ORCID

Affiliation:

1. Department of Electrical and Electronics Engineering Dayananda Sagar College of Engineering Bengaluru Karnataka India

2. Department of Electrical and Electronics Engineering M.Kumarasamy College of Engineering Karur Tamil Nadu India

3. Department of Electrical and Electronics Engineering V V College of Engineering Tirunelveli Tamil Nadu India

4. Department of Electrical and Electronics Engineering Sathyabama Institute of Science and Technology Chennai Tamil Nadu India

5. Rajasthan Rajya Vidyut Prasaran Nigam Ltd. Sikar Rajasthan India

6. Department of Electrical and Computer Systems Engineering Monash University Clayton Australia

Abstract

AbstractThe Optimal Power Flow (OPF) is a primary tool in planning and installing power systems. It attempts to minimize the operating costs associated with generating and transmitting electrical power by modifying control parameters to satisfy environmental, economic, and operational constraints. Implementing an efficient and robust optimization algorithm for the above‐said problem is critical to achieving such a typical objective. Therefore, this paper introduces and evaluates new variants of the Successive History‐based Adaptive Differential Evolutionary (SHADE) algorithm called ESHADE, SHADE‐SFS, and SHADE‐SAP to solve the OPF problems with equality and inequality constraints. Generally, the static penalty approach is widely used for eliminating infeasible solutions discovered during the search phase when searching for feasible solutions. This approach requires the accurate selection of penalty coefficients, accomplished through the trial‐and‐error method. The proposed ESHADE algorithm is formulated using Self‐Adaptive Penalty (SAP) and Superiority of Feasible Solution (SFS) mechanisms to obtain feasible solutions for OPF problems. Two IEEE bus systems are used to demonstrate the effectiveness of the proposed algorithm in handling OPF problems. The fuel cost and active power loss obtained by the proposed algorithm are better than other state‐of‐the‐art algorithms. The results reveal that the proposed framework offers significant advantages over other algorithms.

Publisher

Institution of Engineering and Technology (IET)

Subject

Electrical and Electronic Engineering,Energy Engineering and Power Technology,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3