Optimal sizing and operation of hybrid energy storage systems in co‐phase traction power supply system considering battery degradation

Author:

Gao Shengfu1,Li Qunzhan1,Huang Xiaohong1,Ma Qingan1,Liu Wei1,Tang Sida2

Affiliation:

1. School of Electrical Engineering Southwest Jiaotong University Chengdu China

2. State Grid Sichuan Electric Power Company Chengdu China

Abstract

AbstractTo recycle regenerative braking energy (RBE) while reducing demand charge in electrified railway, a co‐phase power supply system with hybrid energy storage system (HESS) is implemented. However, the dynamical degradation characteristic of battery is necessary to be considered in optimal operation of HESS. A bi‐level model considering battery degradation is proposed to obtain optimal sizing and operation of HESS. The proposed model includes a novel real‐time energy management strategy (EMS) using average power as thresholds, to effectively reduce the demand charge and energy consumption charge. Thresholds are dynamically adjusted with the consideration of battery capacity degradation. A real measured load profile from Beijing‐Shanghai high speed railway is studied. The results demonstrate that the proposed EMS performs better than previous EMS in cost saving. The dynamically adjusted thresholds of EMS are proved to be essential under the consideration of battery degradation. With the optimal sizing of the HESS, the traction substation can achieve 8.69% annual saving of demand charge and recycle 52.33% of the RBE. The results also show that a traction substation equipped with the HESS yields higher economic benefit than the energy storage systems equipped with only a battery or a supercapacitor.

Publisher

Institution of Engineering and Technology (IET)

Subject

Electrical and Electronic Engineering,Energy Engineering and Power Technology,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Sizing and Energy Management Method of Energy Storage System in Urban Rail Transit;2023 7th International Conference on Smart Grid and Smart Cities (ICSGSC);2023-09-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3