Decentralized energy management system for smart microgrids using reinforcement learning

Author:

Darshi Razieh1ORCID,Shamaghdari Saeed1ORCID,Jalali Aliakbar1ORCID,Arasteh Hamidreza2ORCID

Affiliation:

1. School of Electrical Engineering Iran University of Science and Technology Tehran Iran

2. Department of Power Systems Planning and Operation Niroo Research Institute Tehran Iran

Abstract

AbstractThis paper presents a novel fully decentralized and intelligent energy management system (EMS) for a smart microgrid based on reinforcement learning (RL) strategy. The purpose of the proposed EMS is to maximize the benefit of all microgrid entities comprising customers and distributed energy resources (DERs). Due to unpredictable features of renewable energy sources and variability of consumers’ demands, designing the microgrid EMS is a complicated task. To overcome this issue, the multi‐agent hour‐ahead energy management problem is modelled as a finite Markov decision process. The microgrid entities are considered as intelligent agents. The optimal policy of agents is obtained through a newly developed framework of the model‐free Q‐learning algorithm to maximize the benefit of all renewable and non‐renewable energy resources and battery energy storage system. The degradation model of the battery is considered to reduce the number of battery replacements. To ensure customers’ comfort, customers’ expenses are decreased without demand curtailment via introducing two types of load shifting techniques. The microgrid operation is analysed under four scenarios comprising no‐learning, generator‐learning, customer‐learning, and whole‐learning. the performance of the proposed algorithm is compared to the Monte Carlo method and simulation results on the real power‐grid dataset show the superiority of the algorithm.

Publisher

Institution of Engineering and Technology (IET)

Subject

Electrical and Electronic Engineering,Energy Engineering and Power Technology,Control and Systems Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3