Design considerations of series type hybrid circuit breaker (S‐HCB)

Author:

Alashi Mahmoud1ORCID,Cooper Triston1,Zhou Yuanfeng1,Shen Z. John2,Brown Ian1,Wong Thomas1

Affiliation:

1. Illinois Institute of Technology Electrical and Computer Engineering Chicago Illinois USA

2. School of Mechatronic Systems Engineering Simon Fraser University Burnaby British Columbia Canada

Abstract

AbstractThe series‐type direct current (DC) hybrid circuit breaker (S‐HCB) concept was previously reported to offer better performance than solid‐state circuit breakers (SSCB) and hybrid circuit breakers (HCB). S‐HCB offers low conduction power loss like an HCB and ‐scale interruption time, which is even faster than an SSCB. It uses a pulse transformer to isolate the lower‐voltage high‐inductance power electronic circuit from the high‐voltage, low‐inductance main power loop. This paper provides analysis of the impact of the S‐HCB circuit components on the overall system performance and a scalable S‐HCB design guide for different DC system voltage and current ratings. In addition, system energy flow analysis is performed in the time domain to provide an understanding of how energy is delivered, dissipated, and released throughout the entire fault interruption process. The S‐HCB prototype was experimentally tested at 3 kV/30 A and 6 kV/150A with the results showing the interruption of the low fault current of 30 A and the high fault current of 150 A within 8  and maintaining the fault current at a near zero value for 300 to enable an arcless opening of a series mechanical switch. The key design challenges of S‐HCB at high voltage and high current ratings were discussed and possible solutions to mitigate those challenges were introduced.

Funder

U.S. Department of Energy

Publisher

Institution of Engineering and Technology (IET)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3