Multistage converter with reduced switch voltage stress and diode current stress

Author:

Bhaskar M. S.1ORCID,Subramaniam Umashankar1,Almakhles Dhafer1,Selvam Sivakumar1,Muhibbullah M.2ORCID

Affiliation:

1. Renewable Energy Lab Prince Sultan University Riyadh Saudi Arabia

2. Department of Electrical and Electronic Engineering Bangladesh University Dhaka Bangladesh

Abstract

AbstractThe utilization of switched inductors, involving parallel charging and series discharging of inductors, is extensively embraced in diverse DC–DC converters for attaining high voltage gain; nevertheless, the stress on switch voltage and diode current escalates considerably with an increased count of inductors integrated into the switched inductors network. In the classical multistage switched inductor converter, the switch voltage aligns with the output voltage, and the diode experiences a high current as the number of stages increases. This research recommends a DC–DC multistage converter for energy conversion and high voltage gain with low stress. In this paper, a novel multistage switched inductor converter is introduced and designed to attain higher voltage gain while mitigating the stresses on switch voltage and diode current. The proposed circuit is created by replacing the standard multistage switched inductor converter's possible diodes with power switches. All of the switching devices are connected in such a way that the output voltage and input current are shared by all of the switches and diodes, respectively. As a consequence, the voltage stress on switches and the current stress on diodes are comparatively low, resulting in a high efficiency compared to a typical multistage switched inductor converter. It's interesting to note that the proposed converter and a typical multistage switched inductor converter both require the same amount of components. Different operation modes, analysis, a non‐ideal model, and a comparison of the suggested and recently constructed converters are discussed. The effectiveness and performance of the circuit are validated experimentally.

Funder

Prince Sultan University

Publisher

Institution of Engineering and Technology (IET)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3