Thermal runaway and induced electrical failure of epoxy resin in high‐frequency transformers: Insulation design reference

Author:

Shang Xingyu1ORCID,Pang Lei1,Bu Qinhao1,Zhang Qiaogen1

Affiliation:

1. State Key Laboratory of Electrical Insulation and Power Equipment Xi'an Jiaotong University Xi'an China

Abstract

AbstractSolid‐state transformers (SSTs) have applications in medium‐voltage (MV) DC grids and compact power systems. High‐frequency transformer (HFT) is the core component of SSTs. High levels of high frequency high dv/dt voltage stresses challenged the integrity of the galvanic insulation of HFTs. However, dielectric thermal runaway and resultant electrical failure mechanisms in epoxy resin (EP) cast insulation remain unclear. Dielectric heating of EP across varying voltages, frequencies, rising edges, duty cycles and DC biases were measured and corroborated by simulation. The thermal runaway threshold mainly depends on the tangency point of the loss generation and heat dissipation curves below the glass transition temperature. Observations reveal that thermal runaway does not directly cause breakdown; instead, thermal decomposition above 200°C triggers discharge and eventual failure. Simulations demonstrate that temperature rise mainly depends on the average field within the electrode region and inter‐segment and inter‐layer distances within the HFT winding definitively impact insulation thermal runaway. By applying different criteria for MV and high‐voltage (HV) transformers, the reference electric fields for insulation design with unfilled and filled EP were obtained. For instance, limiting dielectric heating below 5 K at 50 kHz necessitates an RMS average field less than 0.44 V/mm, which is much lower than dry‐type transformer conventions. The authors prove the necessity of re‐evaluating the permissible field strength in HFT insulation design.

Funder

National Natural Science Foundation of China - State Grid Corporation Joint Fund for Smart Grid

Publisher

Institution of Engineering and Technology (IET)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Lifetime Estimation of Epoxy Cast Insulation under Medium-frequency Square Voltage with Ramp Breakdown Tests;2024 IEEE 5th International Conference on Dielectrics (ICD);2024-06-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3