An analysis of parameters affecting ampacity in aircraft bipolar MVDC power cables via coupled electrical, thermal, and computational fluid dynamic modelling

Author:

Azizi Arian1ORCID,Ghassemi Mona1ORCID

Affiliation:

1. Zero Emission Realization of Optimized Energy Systems (ZEROES) Laboratory Department of Electrical and Computer Engineering The University of Texas at Dallas Richardson Texas USA

Abstract

AbstractThe next generation of aircraft, including more electric aircraft and all‐electric aircraft, require electric power systems with high power density and low system mass specifications. Increasing the voltage of the system to the range of a few kV, medium voltage (MV), is a reasonable approach to achieving high‐power‐density and low‐system‐mass EPSs for aircraft applications. Higher voltages, however, pose many challenges for aviation MV power cables such as arcs and arc tracking, partial discharges (PDs), and thermal management. In this regard, thermal management is more challenging since heat transfer by convection is greatly reduced at wide‐body aircraft's cruising altitudes due to the reduced air pressure. In this paper, a finite element method (FEM) model is developed in COMSOL Multiphysics for an aircraft bipolar MVDC (±5 kV) power cable. Using the model, the maximum permissible cable current at a low pressure of 18.8 kPa (at an altitude of 12.2 km from sea level, the usual cruising altitude for wide‐body aircraft) is calculated. Also, an analytical model is developed based on analytical and proven empirical correlations governing conductive, radiative, and convective heat transfers at the steady state to estimate the ampacity of the bipolar cable system at reduced pressure. It was shown that the proposed analytical model can be used for atmospheric pressure and systems with a larger number of poles, expanding its range of applications. The results of the FEM and analytical models correlate at wide ranges of parameters such as ambient temperature, duct size, distance between the positive and negative pole cables, and the overall diameter of the cables. The influence of horizontal and vertical arrangement of poles is included in the analytical model. The results of this study can be used to design bipolar MVDC power cable systems for the envisaged wide‐body AEA.

Funder

Advanced Research Projects Agency - Energy

Publisher

Institution of Engineering and Technology (IET)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3