Influence of different anodised nanoporous structures on the anti‐icing and electrical properties of transmission Al lines

Author:

Dai Xu1,Yuan Yuan2ORCID,Xiao Jie2,Jiang Chenghao2,Hua Xujiang2,Xiang Huiying2,Zhu Tao2,Liu Guoyong3,Zhou Jiang3,Liao Ruijin1

Affiliation:

1. State Key Laboratory of Power Transmission Equipment & System Security and New Technology Chongqing University Chongqing China

2. College of Materials Science and Engineering Chongqing University Chongqing China

3. Dongfang Electric Machinery Co., Ltd Deyang China

Abstract

AbstractIce accumulation of overhead transmission lines can lead to serious damage to power systems. Superhydrophobic nanostructured Al conductors are proposed to replace the de‐icing or ice‐melting equipment for economic advantages, good anti‐icing properties and robust electrical performance. Anodisation under different direct current densities is adopted to fabricate two nanostructures on Al conductors, including the reticular and honeycomb‐like nanoporous structures. Compared to pure Al conductors, the anodised surface of honeycomb‐like nanoporous structures exhibits lower ice adhesion (3.82 kPa) and ice accumulation. Aluminium conductor steel reinforced treated in the proposed method has also been validated to exhibit a significant anti‐glaze icing property. Additionally, corona performance and line loss are experimentally measured and calculated to prove good electrical performance. The 0.27 A Al strand shows the highest corona inception voltage (27.86 kV) and the lowest AC resistance (4.65 Ω/km), which is attributed to the good dielectric property and heat dissipation. Therefore, the proposed anti‐icing transmission conductors show profound application potential for power systems.

Publisher

Institution of Engineering and Technology (IET)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3