A novel linear regression density peak clustering‐based transmission line protection for line‐commuted converter‐voltage source converter hybrid high voltage direct current system

Author:

Lei Shunguang1ORCID,Shu Hongchun2,Li Zhimin1,Hu Yinan2,Tian Xincui2,Liu Taiwen2

Affiliation:

1. School of Electric Engineering and Automation Harbin Institute of Technology Harbin Heilongjiang China

2. Department of Electric Engineering Kunming University of Science and Technology Kunming Yunnan China

Abstract

AbstractLine‐commuted converter (LCC)–voltage source converter (VSC) hybrid high voltage direct current (HVDC) transmission system is an innovative technology, the existing LCC and VSC protection require setting, and it is difficult to be directly applied in the LCC–VSC hybrid HVDC, which is a serious problem in practical engineering. A novel linear regression density peak clustering (LRDPC) approach is introduced for transmission line protection. LRDPC employs Least Squares linear regression to compute the fault current slope, followed by density peak clustering for fault type identification. The proposed protection structure is straightforward and setting‐less, eliminating the need for fault pole selection elements and classification thresholds. Validation on the Kun‐Liu‐Long LCC–VSC HVDC RTDS system demonstrates the method's effectiveness in identifying diverse faults under varying conditions, including fault types, locations, resistances, and signal‐to‐noise ratios. Notably, it remains robust against fault impedance (600 Ω) and noise interference (20 dB).

Funder

National Natural Science Foundation of China

Publisher

Institution of Engineering and Technology (IET)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3