Experiment of electrothermal stress for different types of end turn grading in the inverter‐fed form‐wound windings

Author:

Zhao Wenhuan1ORCID,Wang Peng1ORCID,Zhu Yingwei1,Zhang Yue2,Yang Shuai2,Liu Yan2,Shi Yang1,Yu Chaofan1ORCID

Affiliation:

1. Electrical Engineering Department Sichuan University Chengdu Sichuan China

2. D&R Dongfang Electric Machinery Co., Ltd. Deyang Sichuan China

Abstract

AbstractEnd turn grading with resistive–capacitive coupling experiences severe electrothermal stress when subjected to pulse width modulation (PWM) voltage. In this paper, several experiments and simulations were carried conducted for four types of end turn grading. First of all, the temperature rise in the end turn grading increased with a decrease in rise time. When the rise time was less than 500 ns, the temperature rise at the terminal was higher owing to the increased capacitive current coupled from the main wall insulation. Further, the current in the linear region exhibited minimal variation at different fundamental frequencies resulting in synchronized the temperature rise at the terminal and overlap. Furthermore, the jump voltage was the key factor influencing temperature rise in end turn grading, confirmed by comparing different voltage magnitudes. Finally, the transient behaviour of the maximum field in the stress grading material was determined at rise time. The experimental and simulation results indicate that balancing and interdependently addressing the electrical and thermal stress protection in end turn grading is crucial. The study aims to provide an experimental and theoretical foundation for an insulation system of inverter‐fed rotating machinery operating under PWM voltage.

Funder

Science and Technology Department of Sichuan Province

National Natural Science Foundation of China

Publisher

Institution of Engineering and Technology (IET)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3