Microscopic mechanisms analysis of various dielectric response processes in oil‐paper insulation with different insulating states

Author:

Jiang Zaijun1,Liu Jiefeng1ORCID,Fan Xianhao1ORCID,Zhang Heng1,Zhang Enze1,Song Boshu1,Zhang Yiyi1

Affiliation:

1. School of Electrical Engineering Guangxi University Nanning Guangxi China

Abstract

AbstractVarious dielectric response processes in the oil‐paper insulation are sensitively affected by the insulating states (ageing degrees and moisture contents). However, the existing research is still incomplete in revealing the microscopic mechanisms of various dielectric response processes in oil‐paper insulation with different insulating states. Given this issue, the genetic algorithm is first adopted to extract the Dissado–Hill (D–H) model parameters by simulating the frequency domain spectroscopy (FDS) of oil‐paper insulation. Then, the change laws of the extracted D–H model parameters are adopted to reveal the microscopic mechanisms of various dielectric response processes. Microscopic mechanisms of four dielectric response processes are studied, which are quasi‐dc relaxation, loss peak relaxation, optical frequency relaxation, and DC conductance. Meanwhile, due to the dielectric response processes being dominated by various polar particles (methanol, ethanol, furfural, and water molecule), the contents of various ageing by‐products dissolved in the insulating oil are measured to support the above analysis. In this respect, a dielectric theoretical reference for the FDS technique to research the insulating states of oil‐paper insulation is provided.

Funder

National Natural Science Foundation of China

Publisher

Institution of Engineering and Technology (IET)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3