Malicious domain detection based on semi‐supervised learning and parameter optimization

Author:

Liao Renjie1ORCID,Wang Shuo12ORCID

Affiliation:

1. State Key Laboratory of Astronautic Dynamics Xi'an Satellite Control Center Xi'an China

2. State Key Laboratory of Integrated Services Networks Xidian University Xi'an China

Abstract

AbstractMalicious domains provide malware with covert communication channels which poses a severe threat to cybersecurity. Despite the continuous progress in detecting malicious domains with various machine learning algorithms, maintaining up‐to‐date various samples with fine‐labeled data for training is difficult. To handle these issues and improve the detection accuracy, a novel malicious domain detection method named MDND‐SS‐PO is proposed that combines semi‐supervised learning and parameter optimization. The contributions of the study are as follows. First, the method extracts the statistical features of the IP address, TTL value, the NXDomain record, and the domain name query characteristics to discriminate Domain‐Flux and Fast‐Flux domain names simultaneously. Second, an improved DBSCAN based on the neighborhood division is designed to cluster labeled data and unlabeled data with low time consumption. Then, based on the clustering hypothesis, unlabeled data is tagged with pseudo‐label according to the cluster results, which aims to train a supervised classifier effectively. Finally, Gaussian process regression is used to optimize parameter settings of the algorithm. And the Silhouette index and F1 score are introduced to evaluate the optimization results. Experimental results show that the proposed method achieved a precise detection performance of 0.885 when the ratio of labeled data is 5%.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Institution of Engineering and Technology (IET)

Reference25 articles.

1. A survey on malicious domains detection through DNS data analysis;Yury Z.;ACM Comput. Surv.,2018

2. Unsupervised malicious domain detection with less labeling effort

3. A density‐based algorithm for discovering clusters in large spatial databases with noise;Ester M.;Knowl. Discov. Data Mining,1996

4. Detect Fast‐Flux domain name with DGA through IP fluctuation;Jiang H.;Int. J. Netw. Secu,2021

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3