Machine learning assisted adaptive LDPC coded system design and analysis

Author:

Xie Cong1,El‐Hajjar Mohammed1ORCID,Ng Soon Xin1ORCID

Affiliation:

1. School of Electronics and Computer Science University of Southampton Southampton UK

Abstract

AbstractThis paper proposes a novel machine learning (ML) assisted low‐latency low density parity check (LDPC) coded adaptive modulation (AM) system, where short block‐length LDPC codes are used. Conventional adaptive modulation and coding (AMC) system includes fixed look‐up table method, which is also called inner loop link adaptation (ILLA) and outer loop link adaptation (OLLA). For ILLA, the adaptive capability is achieved by switching the modulation and coding modes based on a look‐up table using signal‐to‐noise ratio (SNR) thresholds at the target bit error rate (BER), while OLLA builds upon the ILLA method by dynamically adjusting the SNR thresholds to further optimize the system performance. Although both improve the system overall throughput by switching between different transmission modes, there is still a gap to optimal performance as the BER is comparatively far away from the target BER. Machine learning (ML) is a promising solution in solving various classification problems. In this work, the supervised learning based k‐nearest neighbours (KNN) algorithm is invoked for choosing the optimum transmission mode based on the training data and the instantaneous SNR. This work focuses on the low‐latency communications scenarios, where short block‐length LDPC codes are utilized. On the other hand, given the short block‐length constraint, we propose to artificially generate the training data to train our ML assisted AMC scheme. The simulation results show that the proposed ML‐LDPC‐AMC scheme can achieve a higher throughput than the ILLA system while maintaining the target BER. Compared with OLLA, the proposed scheme can maintain the target BER while the OLLA fails to maintain the target BER when the block length is short. In addition, when considering the channel estimation errors, the performance of the proposed ML‐LDPC‐AMC maintains the target BER, while the ILLA system's BER performance can be higher than the target BER.

Publisher

Institution of Engineering and Technology (IET)

Subject

Electrical and Electronic Engineering,Computer Science Applications

Reference70 articles.

1. On the performance of adaptive modulation in cognitive radio networks

2. Adaptive Wireless Transceivers

3. Adaptive Feedback Communications

4. Adaptive modulation/TDMA scheme for large capacity personal multi‐media communication systems;Sampei S.;IEICE Trans. Commun.,1994

5. Adaptive modulation and coding techniques for OFDMA systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3